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Abstract8

A wealth of remotely sensed image time series covering large areas is now available to the9

earth science community. Change detection methods are often not capable of detecting land10

cover changes within time series that are heavily influenced by seasonal climatic variations.11

Detecting change within the trend and seasonal components of time series enables the12

classification of different types of changes. Changes occurring in the trend component often13

indicate disturbances (e.g. fires, insect attacks), while changes occurring in the seasonal14

component indicate phenological changes (e.g. change in land cover type). A generic15

change detection approach is proposed for time series by detecting and characterizing16

Breaks For Additive Seasonal and Trend (BFAST). BFAST integrates the decomposition17

of time series into trend, seasonal, and remainder components with methods for detecting18

change within time series. BFAST iteratively estimates the time and number of changes,19

and characterizes change by its magnitude and direction. We tested BFAST by simulating20

16-day Normalized Difference Vegetation Index (NDVI) time series with varying amounts21

of seasonality and noise, and by adding abrupt changes at different times and magnitudes.22

This revealed that BFAST can robustly detect change with different magnitudes (> 0.123

NDVI) within time series with different noise levels (0.01–0.07 �) and seasonal amplitudes24

(0.1–0.5 NDVI). Additionally, BFAST was applied to 16-day NDVI Moderate Resolution25

Imaging Spectroradiometer (MODIS) composites for a forested study area in south eastern26

Australia. This showed that BFAST is able to detect and characterize spatial and temporal27

changes in a forested landscape. BFAST is not specific to a particular data type and can be28

applied to time series without the need to normalize for land cover types, select a reference29

period, or change trajectory. The method can be integrated within monitoring frameworks30

and used as an alarm system to flag when and where changes occur.31
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1. Introduction34

Natural resource managers, policy makers and researchers demand knowledge of land35

cover changes over increasingly large spatial and temporal extents for addressing many36

pressing issues such as global climate change, carbon budgets, and biodiversity (DeFries37

et al., 1999; Dixon et al., 1994). Detecting and characterizing change over time is the38

natural first step toward identifying the driver of the change and understanding the change39

mechanism. Satellite remote sensing has long been used as a means of detecting and40

classifying changes in the condition of the land surface over time (Coppin et al., 2004; Lu41

et al., 2004). Satellite sensors are well-suited to this task because they provide consistent42

and repeatable measurements at a spatial scale which is appropriate for capturing the43

effects of many processes that cause change, including natural (e.g. fires, insect attacks)44

and anthropogenic (e.g. deforestation, urbanization, farming) disturbances (Jin and Sader,45

2005).46

The ability of any system to detect change depends on its capacity to account for47

variability at one scale (e.g. seasonal variations), while identifying change at another48

(e.g. multi-year trends). As such, change in ecosystems can be divided into three classes:49

(1) seasonal change, driven by annual temperature and rainfall interactions impacting50

plant phenology or proportional cover of land cover types with different plant phenology;51

(2) gradual change such as interannual climate variability (e.g. trends in mean annual52

rainfall) or gradual change in land management or land degradation; and (3) abrupt change,53

caused by disturbances such as deforestation, urbanization, floods, and fires.54

Although the value of remotely sensed long term data sets for change detection has55

been firmly established (de Beurs and Henebry, 2005), only a limited number of time series56

change detection methods have been developed. Two major challenges stand out. First,57

methods must allow for the detection of changes within complete long term data sets while58

accounting for seasonal variation. Estimating change from remotely sensed data is not59

straightforward, since time series contain a combination of seasonal, gradual and abrupt60

changes, in addition to noise that originates from remnant geometric errors, atmospheric61

scatter and cloud effects (Roy et al., 2002). Thorough reviews of existing change detection62

methods by Coppin et al. (2004) and Lu et al. (2004) have shown, however, that most63

methods focus on short image time series (only 2–5 images). The risk of confounding64

variability with change is high with infrequent images, since disturbances can occur in65
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between image acquisitions (de Beurs and Henebry, 2005). Several approaches have been66

proposed for analyzing image time series, such as Principal Component Analysis (PCA)67

(Crist and Cicone, 1984), wavelet decomposition (Anyamba and Eastman, 1996), Fourier68

analysis (Azzali and Menenti, 2000) and Change Vector Analysis (CVA) (Lambin and69

Strahler, 1994). These time series analysis approaches discriminate noise from the signal70

by its temporal characteristics but involve some type of transformation designed to isolate71

dominant components of the variation across years of imagery through the multi-temporal72

spectral space. The challenge of these methods is the labeling of the change components,73

because each analysis depends entirely on the specific image series analyzed. Compared to74

PCA, Fourier analysis, and wavelet decomposition, CVA allows the interpretation of change75

processes, but can still only be performed between two periods of time (e.g. between years76

or growing seasons) (Lambin and Strahler, 1994), which makes the analysis dependent77

on the selection of these periods. Furthermore, change in time series if often masked by78

seasonality driven by yearly temperature and rainfall variation. Existing change detection79

techniques minimize seasonal variation by focussing on specific periods within a year (e.g.80

growing season) (Coppin et al., 2004), temporally summarizing time series data (Bontemps81

et al., 2008; Fensholt et al., 2009) or normalizing reflectance values per land cover type82

(Healey et al., 2005) instead of explicitly accounting for seasonality.83

Second, change detection techniques need to be independent of specific thresholds or84

change trajectories. Change detection methods that require determination of thresholds85

often produce misleading results due to different spectral and phenological characteristics86

of land cover types (Lu et al., 2004). The determination of thresholds adds significant cost87

to efforts to expand change detection to large areas. Trajectory based change detection has88

been proposed to move towards a threshold independent change detection by characterizing89

change by its temporal signature (Hayes and Cohen, 2007; Kennedy et al., 2007). This90

approach requires definition of the change trajectory specific for the type of change to be91

detected and spectral data to be analyzed (e.g. short-wave infrared or near-infrared based92

indices). Furthermore, the method will only function if the observed spectral trajectory93

matches one of the hypothesized trajectories. Trajectory based change detection can94

be interpreted as a supervised change detection method while there is a need for an95

unsupervised, more generic, change detection approach independent of the data type and96

change trajectory.97
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The purpose of this research was to develop a generic change detection approach for98

time series, involving the detection and characterization of Breaks For Additive Seasonal99

and Trend (BFAST). BFAST integrates the iterative decomposition of time series into100

trend, seasonal and noise components with methods for detecting changes, without the101

need to select a reference period, set a threshold, or define a change trajectory. The main102

objectives are:103

(1) the detection of multiple abrupt changes in the seasonal and trend components of the104

time series; and105

(2) the characterization of gradual and abrupt ecosystem change by deriving the time,106

magnitude, and direction of change within the trend component of the time series.107

We assessed BFAST for a large range of ecosystems by simulating Normalized Difference108

Vegetation Index (NDVI) time series with varying amounts of seasonal variation and noise,109

and by adding abrupt changes with different magnitudes. We applied the approach on110

MODIS 16-day image composites (hereafter called 16-day time series) to detect major111

changes in a forested area in south eastern Australia. The approach is not specific to112

a particular data type and could be applied to detect and characterize changes within113

other remotely sensed image time series (e.g. Landsat) or be integrated within monitoring114

frameworks and used as an alarm system to provide information on when and where115

changes occur.116

2. Iterative change detection117

We propose a method that integrates the iterative decomposition of time series into118

trend, seasonal and noise components with methods for detecting and characterizing119

changes (i.e. breakpoints) within time series. Standard time series decomposition methods120

assume that trend and seasonal components are smooth and slowly changing, and so121

these are not directly applicable to the problem of identifying change. For example, the122

Seasonal-Trend decomposition procedure (STL) is capable of flexibly decomposing a series123

into trend, seasonal and remainder components based on a LOcally wEighted regreSsion124

Smoother (LOESS) (Cleveland et al., 1990). This smoothing prevents the detection of125

changes within time series.126
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2.1. Decomposition model127

We propose an additive decomposition model that iteratively fits a piecewise linear128

trend and seasonal model. The general model is of the form Yt = Tt + St + et, t = 1, . . . , n,129

where Yt is the observed data at time t, Tt is the trend component, St is the seasonal130

component, and et is the remainder component. The remainder component is the remaining131

variation in the data beyond that in the seasonal and trend components (Cleveland et al.,132

1990). It is assumed that Tt is piecewise linear, with break points t∗1, . . . , t
∗
m and define133

t∗0 = 0, so that134

Tt = �j + �jt (1)

for t∗j−1 < t ≤ t∗j and where j = 1, . . . ,m. The intercept and slope of consecutive linear135

models, �j and �j , can be used to derive the magnitude and direction of the abrupt change136

(hereafter referred to as magnitude) and slope of the gradual change between detected break137

points. The magnitude of an abrupt change at a breakpoint is derived by the difference138

between Tt at t∗j−1 and t∗j , so that139

Magnitude = (�j−1 − �j) + (�j−1 − �j)t (2)

and the slopes of the gradual change before and after a break point are �j−1 and �j .140

This technique represents a simple yet robust way to characterize changes in time series.141

Piecewise linear models, as a special case of non-linear regression (Venables and Ripley,142

2002), are often used as approximations to complex phenomena to extract basic features of143

the data (Zeileis et al., 2003).144

Similarly, the seasonal component is fixed between break points, but can vary across145

break points. Furthermore, the seasonal break points may occur at different times from146

the break points detected in the trend component. Let the seasonal break points be given147

by t#1 , . . . , t
#
p , and define t#0 = 0. Then for t#j−1 < t ≤ t#j , we assume that148

St =

⎧⎨⎩ i,j if time t is in season i, i = 1, . . . , s− 1;

−
∑s−1

i=1 i,j if time t is in season 0,
(3)

where s is the period of seasonality (e.g. number of observations per year) and i,j denotes149

the effect of season i. Thus, the sum of the seasonal component, St across s successive150

times is exactly zero for t#j−1 < t ≤ t#j . This prevents apparent changes in trend being151
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induced by seasonal breaks happening in the middle of a seasonal cycle. The seasonal term152

can be re-expressed as153

St =
s−1∑
i=1

i,j(dt,i − dt,0) (4)

where dt,i = 1 when t is in season i and 0 otherwise. Therefore, if t is in season 0, then154

dt,i − dt,0 = −1. For all other seasons, dt,i − dt,0 = 1 when t is in season i ∕= 0. dt,i is155

often referred to as a seasonal dummy variable (Makridakis et al., 1998, pp.269-274); it156

has two allowable values (0 and 1) to account for the seasons in a regression model. The157

regression model expressed by Eq. 4 can also be interpreted as a model without intercept158

that contains s− 1 seasonal dummy variables.159

2.2. Iterative algorithm to detect break points160

Our method is similar to that proposed by Haywood and Randal (2008) for use with161

monthly tourism data. Following Haywood and Randal (2008), we estimate the trend and162

seasonal components iteratively. However, we differ from their method by: (1) using STL to163

estimate the initial seasonal component (Ŝt); (2) using a robust procedure when estimating164

the coefficients �j , �j and i,j ; (3) using a preliminary structural change test; and (4) forcing165

the seasonal coefficients to always sum to 0 (rather than adjusting them afterward). An166

alternative approach proposed by Shao and Campbell (2002) combines the seasonal and167

trend term in a piecewise linear regression model without iterative decomposition. This168

approach does not allow for an individual estimation of breakpoints in the seasonal and169

trend component.170

Sequential test methods for detecting break points (i.e. abrupt changes) in a time series171

have been developed, particularly within econometrics (Bai and Perron, 2003; Zeileis et al.,172

2003). These methods also allow linear models to be fitted to sections of a time series, with173

break points at the times where the changes occur. The optimal position of these breaks174

can be determined by minimizing the residual sum of squares, and the optimal number of175

breaks can be determined by minimizing an information criterion. Bai and Perron (2003)176

argue that the Akaike Information Criterion usually overestimates the number of breaks,177

but that the Bayesian Information Criterion (BIC) is a suitable selection procedure in178

many situations (Zeileis et al., 2002, 2003; Zeileis and Kleiber, 2005). Before fitting the179

piecewise linear models and estimating the breakpoints it is recommended to test whether180

breakpoints are occurring in the time series (Bai and Perron, 2003). The ordinary least181
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squares (OLS) residuals-based MOving SUM (MOSUM) test, is selected to test for whether182

one or more breakpoints are occurring (Zeileis, 2005). If the test indicates significant183

change (p < 0.05), the break points are estimated using the method of Bai and Perron184

(2003), as implemented by Zeileis et al. (2002), where the number of breaks is determined185

by the BIC, and the date and confidence interval of the date for each break are estimated.186

The iterative procedure begins with an estimate of Ŝt by using the STL method, where187

Ŝt is estimated by taking the mean of all seasonal sub-series (e.g. for a monthly time series188

the first subseries contains the January values). Then it follows these steps.189

Step 1 If the OLS-MOSUM test indicates that breakpoints are occurring in the trend190

component, the number and position of the trend break points (t∗1, . . . , t
∗
m) are191

estimated from the seasonally adjusted data, Yt − Ŝt.192

Step 2 The trend coefficients, �j and �j for j = 1, . . . ,m, are then computed using robust193

regression of Eq. 1 based on M-estimation (Venables and Ripley, 2002). The trend194

estimate is then set to T̂t = �̂j + �̂jt for t = t∗j−1 + 1, . . . , t∗j .195

Step 3 If the OLS-MOSUM test indicates that breakpoints are occurring in the seasonal196

component, the number and position of the seasonal break points (t#1 , . . . , t
#
p ) are197

estimated from the detrended data, Yt − T̂t.198

Step 4 The seasonal coefficients, i,j for j = 1, . . . ,m and i = 1, . . . , s − 1, are then199

computed using a robust regression of Eq. 4 based on M-estimation. The seasonal200

estimate is then set to Ŝt =
∑s−1

i=1 ̂i,j(dt,i − dt,0) for t = t#j−1 + 1, . . . , t#j .201

These steps are iterated until the number and position of the breakpoints are unchanged.202

We have followed the recommendations of Bai and Perron (2003) and Zeileis et al. (2003)203

concerning the fraction of data needed between the breaks. For 16-day time series, we used204

a minimum of one year of data (i.e. 23 observations) between successive change detections,205

corresponding to 12% of a 9 year data span (2000–2008). This means that if two changes206

occur within a year, only the most significant change will be detected.207

3. Validation208

The proposed approach can be applied to a variety of time series, and is not restricted209

to remotely sensed vegetation indices. However, validation has been conducted using210
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Normalized Difference Vegetation Index (NDVI) time series, the most widely used vegetation211

index in medium to coarse scale studies. The NDVI is a relative and indirect measure of212

the amount of photosynthetic biomass, and is correlated with biophysical parameters such213

as green leaf biomass and the fraction of green vegetation cover, whose behavior follows214

annual cycles of vegetation growth (Myneni et al., 1995; Tucker, 1979).215

We validated BFAST by (1) simulating 16-day NDVI time series, and (2) applying216

the method to 16-day MODIS satellite NDVI time series (2000–2008). Validation of217

multi-temporal change-detection methods is often not straightforward, since independent218

reference sources for a broad range of potential changes must be available during the change219

interval. Field validated single-date maps are unable to represent the type and number220

of changes detected (Kennedy et al., 2007). We simulated 16-day NDVI time series with221

different noise, seasonality, and change magnitudes in order to robustly test BFAST in a222

controlled environment. However, it is challenging to create simulated time series that223

approximate remotely sensed time series which contain combined information on vegetation224

phenology, interannual climate variability, disturbance events, and signal contamination225

(e.g. clouds) (Zhang et al., 2009). Therefore, applying the method to remotely sensed data226

and performing comparisons with in-situ data remains necessary. In the next two sections,227

we apply BFAST to simulated and MODIS NDVI time series.228

3.1. Simulation of NDVI time series229

NDVI time series are simulated by extracting key characteristics from MODIS 16-230

day NDVI time series. We selected two MODIS NDVI time series (as described in 3.2)231

representing a grassland and a pine plantation (Fig. 1), expressing the most different232

phenology in the study area, to extract seasonal amplitude, noise level, and average value.233

Simulated NDVI time series are generated by summing individually simulated seasonal,234

noise, and trend components. First, the seasonal component is created using an asymmetric235

Gaussian function for each season. This Gaussian-type function has been shown to perform236

well when used to extract seasonality by fitting the function to time series (Jönsson and237

Eklundh, 2002). The amplitude of the MODIS NDVI time series was estimated using the238

range of the seasonal component derived with the STL function, as shown in Fig. 2. The239

estimated seasonal amplitudes of the real forest and grassland MODIS NDVI time series240

were 0.1 and 0.5 (Fig. 1). Second, the noise component was generated using a random241

number generator that follows a normal distribution N(� = 0, � = x), where the estimated242
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x values were 0.04 and 0.02, to approximate the noise within the real grass and forest243

MODIS NDVI time series (Lhermitte et al., submitted). Vegetation index specific noise was244

generated by randomly replacing the white noise by noise with a value of −0.1, representing245

cloud contamination that often remains after atmospheric correction and cloud masking246

procedures. Third, the real grass and forest MODIS NDVI time series were approximated247

by selecting constant values 0.6 and 0.8 and summing them with the simulated noise and248

seasonal component. A comparison between real and simulated NDVI time series is shown249

in Fig. 1.250

Based on the parameters required to simulate NDVI time series similar to the real grass251

and forest MODIS NDVI time series (Fig. 1), we selected a range of amplitude and noise252

values for the simulation study (Table 1). These values are used to simulate NDVI time253

series of different quality (i.e. varying signal to noise ratios) representing a large range of254

land cover types.255

Table 1: Parameter values for simulation of 16-day NDVI time series

Parameters Values

Amplitude 0.1, 0.3, 0.5
� Noise 0.01, 0.02, . . . , 0.07
Magnitude −0.3,−0.2,−0.1, 0

The accuracy of the method for estimating the number, timing and magnitude of abrupt256

changes was assessed by adding disturbances with a specific magnitude to the simulated257

time series. A simple disturbance was simulated by combining a step function with a258

specific magnitude (Table 1) and linear recovery phase (Kennedy et al., 2007). As such,259

the disturbance can be used to simulate, for example, a fire in a grassland or an insect260

attack on a forest. Three disturbances were added to the sum of simulated seasonal, trend,261

and noise components using simulation parameters in Table 1. An example of a simulated262

NDVI time series with three disturbances is shown in Fig. 3. A Root Mean Square Error263

(RMSE) was derived for 500 iterations of all the combinations of amplitude, noise and264

magnitude of change levels to quantify the accuracy of estimating: (1) the number of265

detected changes, (2) the time of change, and (3) the magnitude of change.266

3.2. Spatial application on MODIS image time series267

We apply BFAST to real remotely sensed time series, and compare the detected changes268

with a spatial validation data set. BFAST provides information on the number, time,269
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magnitude and direction of changes in the trend and seasonal components of a time series.270

We focussed on the timing and magnitude of major changes occurring within the trend271

component.272

We selected the 16-day MODIS NDVI composites with a 250m spatial resolution273

(MOD13Q1 collection 5), since this product provides frequent information at the spatial274

scale at which the majority of human-driven land cover changes occur (Townshend and275

Justice, 1988). The MOD13Q1 16-day composites were generated using a constrained view276

angle maximum NDVI value compositing technique (Huete et al., 2002). The MOD13Q1277

images were acquired from the February 24th of 2000 to the end of 2008 (23 images/year278

except for the year 2000) for a multi-purpose forested study area (Pinus radiata plantation)279

in South Eastern Australia (Lat. 35.5∘ S, Lon. 148.0∘ E). The images contain data from280

the red (620–670nm) and near-infrared (NIR, 841–876nm) spectral wavelengths. We used281

the binary MODIS Quality Assurance flags to select only cloud-free data of optimal quality.282

The quality flags, however, do not guarantee cloud-free data for the MODIS 250 m pixels283

since that algorithms used to screen clouds use bands at coarse resolution. Missing values284

are replaced by linear interpolation between neighboring values within the NDVI series285

(Verbesselt et al., 2006).286

The 16-day MODIS NDVI image series were analyzed, and the changes revealed were287

compared with spatial forest inventory information on the ’year of planting’ of Pinus288

radiata. Time of change at a 16-day resolution was summarized to a yearly temporal289

resolution to facilitate comparison with the validation data. The validation protocol was290

applied under the assumption that no other major disturbances (e.g. tree mortality) would291

occur that would cause a change in the NDVI time series bigger than the change caused292

by harvesting and planting activities.293

4. Results294

4.1. Simulated NDVI time series295

Fig. 3 illustrates how BFAST decomposes and fits different time series components. It296

can be seen that the fitted and simulated components are similar, and that the magnitude297

and timing of changes in the trend component are correctly estimated. The accuracies298

(RMSE) of the number of estimated changes are summarized in Fig. 4. Only results for299

seasonal amplitude 0.1 and 0.5 are shown but similar results were obtained for 0.3 NDVI300
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amplitude. Three properties of the method are illustrated. First, the noise level only has301

an influence on the estimation of the number of changes when the magnitude of the change302

is -0.1, and is smaller than the overall noise level. The noise level is expressed as 4 �, i.e.303

99% of the noise range, to enable a comparison with the magnitude (Fig. 4). Second, the304

noise level does not influence the RMSE when no changes are simulated (magnitude =305

0), indicating a low commission error independent of the noise level. Third, the seasonal306

amplitude does not have an influence on the accuracy of change detection. In Fig. 5 only307

simulation results for an amplitude 0.1 are shown, since similar results were obtained for308

other amplitudes (0.3 and 0.5). Overall, Fig. 5 illustrates that the RMSE of estimating the309

time and magnitude of change estimation is small and increases slowly for increasing noise310

levels. Only when the magnitude of change is small (−0.1) compared to the noise level311

(> 0.15), the RMSE increases rapidly for increasing noise levels.312

4.2. Spatial application on MODIS image time series313

The application of BFAST to MODIS NDVI time series of a Pinus radiata plantation314

produced estimates of the time and magnitude of major changes. These results are shown315

spatially in Figs. 6 and 7. The time of change estimated by BFAST is summarized316

each year to facilitate comparison. Only areas for which we had validation data available317

were visualized in Figs. 6 and 7. The overall similarity between the time of planting318

and time of detected change illustrates how BFAST can be used to detect change in a319

forest plantation (Fig. 6). However, differences in the estimated time of change can be320

interpreted using differences in the magnitude of change estimated by BFAST. Fig. 7321

shows that detected changes can have either a positive or a negative magnitude of change.322

This can be explained by the fact that planting in pine plantations in the study area323

corresponds with a harvesting operation in the preceding year (personal communication324

with C. Stone). Harvesting operations cause a significant decrease in the NDVI times series,325

whereas planting causes a more gradual increase in NDVI. Firstly, if planting occurred326

before 2002, the NDVI time series did not contain any significant decrease in NDVI caused327

by the harvesting operations, since the MODIS NDVI time series only started in early328

2000. BFAST therefore detected change with a positive magnitude, indicating regrowth329

(Fig. 7), corresponding to a time of change during or later than the plant date (Fig. 6).330

Fig. 8 (top) illustrates detected changes within a NDVI time series extracted from a single331

MODIS pixel within a pine plantation with a planting activity during 2001. Secondly,332
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if planting occurred after 2003, the time series contained a significant decrease in NDVI333

caused by the harvesting operations. Major change detected as a consequence are changes334

corresponding to harvesting preceding the planting operation, and are therefore detected335

before the planting date (Fig. 6) and have a negative magnitude (Fig. 7). Fig. 8 (middle)336

illustrates detected changes within a NDVI time series with harvesting operation activity337

during 2004. These points illustrate BFAST’s capacity to detect and characterize change,338

but also confirm the importance of simulating time series in a controlled environment, since339

it is very difficult to find validation data to account for all types of change occurring in340

ecosystems.341

Fig. 8 (bottom) shows an example of changes detected by BFAST in an area where342

harvesting and thinning activities were absent. Fig. 9 illustrates how BFAST decomposed343

the NDVI time series and fitted seasonal, trend and remainder components. In 2002 and344

2006 the study area experienced a severe drought, which caused the pine plantations to345

be stressed and the NDVI to decrease significantly. Severe tree mortality occurred in346

2006, since trees were drought-stressed and not able to defend themselves against insect347

attacks (Verbesselt et al., in press). This explains why the change detected in 2006 is348

bigger (magnitude of the abrupt change) and the recovery (slope of the gradual change) is349

slower than the change detected in 2003, as shown in (Fig. 9). This example illustrates350

how the method could be used to detect and characterize changes related to forest health.351

5. Discussion and further work352

The main characteristics of BFAST are revealed by testing the approach using simulated353

time series and by comparing detected changes in 16-day MODIS NDVI time series with354

spatial forest inventory data. Simulation of NDVI time series illustrated that the iterative355

decomposition of time series into a seasonal and trend component was not influenced by356

the seasonal amplitude and by noise levels smaller than the simulated change magnitude.357

This enabled the robust detection of abrupt and gradual changes in the trend component.358

As such, full time series can be analyzed without having to select only data during a359

specific period (e.g. growing season), or can avoid the normalization of reflectance values360

for each land cover type to minimize seasonal variability (Healey et al., 2005). Seasonal361

adjustment by decomposing time series, as implemented in the BFAST approach, facilitates362

the detection of change in the trend component independent of seasonal amplitude or land363

12



cover type information. Considerations for further research fall into four main categories:364

(1) Further research is necessary to study BFAST’s sensitivity to detecting phenological365

change in the seasonal component. This research has focussed on the detection and366

characterization of changes within the trend component of 16-day NDVI time series.367

Changes in the seasonal component were not simulated, and BFAST’s sensitivity to368

detecting seasonal changes using simulated data was not assessed. However, changes369

occurring in the seasonal component can be detected using BFAST. The application of370

BFAST to 16-day MODIS NDVI time series on a forested area (40000ha) revealed that371

seasonal breaks were detected in only 5% of the area. The small number of seasonal372

breaks occurring in the study area could be explained by the fact that a seasonal373

change is only detected when a change between land cover types with a significantly374

different phenology occurs. Time series with a higher temporal resolution (e.g. daily or375

8-day) could increase the accuracy of detecting seasonal changes but might also impact376

the ability to detect subtle changes due to higher noise levels. Zhang et al. (2009)377

illustrated that vegetation phenology can be estimated with high accuracy (absolute378

error of less than 3 days) in time series with a temporal resolution of 6–16 days, but379

that accuracy depends on the occurrence of missing values. It is therefore necessary to380

study BFAST’s capacity to detect phenological change caused by climate variations or381

land use change in relation to the temporal resolution of remotely sensed time series.382

(2) Future algorithm improvements may include the capacity to add functionality to identify383

the type of change with information on the parameters of the fitted piecewise linear384

models (e.g. intercept and slope). In this study we have focussed on the magnitude of385

change, but the spatial application on MODIS NDVI time series illustrated that change386

needs to be interpreted by combining the time and magnitude of change. Alternatively,387

different change types can be identified based on whether seasonal and trend breaks388

occur at the same time or not and whether a discontinuity occurs (i.e. magnitude389

> 0) (Shao and Campbell, 2002). Parameters of the fitted piecewise linear models can390

also be used to compare long term vegetation trends provided by different satellite391

sensors. Fensholt et al. (2009), for example, used linear models to analyze trends in392

annually integrated NDVI time series derived from Advanced Very High Resolution393

Radiometer (AVHRR), SPOT VEGETATION, and MODIS data. BFAST enables the394

analysis of long NDVI time series and avoids the need to summarize data annually395

13



(i.e. loss of information) by accounting for the seasonal and trend variation within396

time series. This illustrates that further work is needed to extend the method from397

detecting change to classifying the type of change detected.398

(3) Evaluating BFAST’s behavior for different change types (e.g. fires versus desertification)399

in a wide variety of ecosystems remains important. BFAST is tested by combining400

different magnitudes of an abrupt change with a large range of simulated noise and401

seasonal variations representing a wide range of land cover types. BFAST is able to402

detect different change types, however, it remains important to understand how these403

change types (e.g. woody encroachment) will be detected in ecosystems with drastic404

seasonal changes (e.g. strong and variable tropical dry seasons) and severe noise in the405

spectral signal (e.g. sun angle and cloud cover in mountainous regions).406

(4) The primary challenge of MODIS data, despite its high temporal resolution, is to407

extract useful information on land cover changes when the processes of interest operate408

at a scale below the spatial resolution of the sensor (Hayes and Cohen, 2007). Landsat409

data have been successfully applied to detect changes at a 30m spatial resolution.410

However, the temporal resolution of Landsat, i.e. 16-day, which is often extended by411

cloud cover, can be a major obstacle. The fusion of MODIS with Landsat images to412

combine high spatial and temporal resolutions has helped to improve the mapping of413

disturbances (Hilker et al., 2009). It is our intention to use BFAST in this integrated414

manner to analyze time series of multi-sensor satellite images, and to be integrated415

with data fusion techniques.416

This research fits within an Australian forest health monitoring framework, where417

MODIS data is used as a ‘first pass’ filter to identify the regions and timing of major418

change activity (Stone et al., 2008). These regions would be targeted for more detailed419

investigation using ground and aerial surveys, and finer spatial and spectral resolution420

imagery.421

6. Conclusion422

We have presented a generic approach for detection and characterization of change in423

time series. ‘Breaks For Additive Seasonal and Trend’ (BFAST) enables the detection of424

different types of changes occurring in time series. BFAST integrates the decomposition of425

time series into trend, seasonal, and remainder components with methods for detecting426

14



multiple changes in time series. BFAST iteratively estimates the dates and number427

of changes occurring within seasonal and trend components, and characterizes changes428

by extracting the magnitude and direction of change. Changes occurring in the trend429

component indicate gradual and abrupt change, while changes occurring in the seasonal430

component indicate phenological changes. The approach can be applied to other time431

series data without the need to select specific land cover types, select a reference period,432

set a threshold, or define a change trajectory.433

Simulating time series with varying amounts of seasonality and noise, and by adding434

abrupt changes at different times and magnitudes, revealed that BFAST is robust against435

noise, and is not influenced by changes in amplitude of the seasonal component. This436

confirmed that BFAST can be applied to a large range of time series with varying noise437

levels and seasonal amplitudes, representing a wide variety of ecosystems. BFAST was438

applied to 16-day MODIS NDVI image time series (2000–2008) for a forested study area439

in south eastern Australia. This showed that BFAST is able to detect and characterize440

changes by estimating time and magnitude of changes occurring in a forested landscape.441

The algorithm can be extended to label changes with information on the parameters442

of the fitted piecewise linear models. BFAST can be used to analyze different types of443

remotely sensed time series (AVHRR, MODIS, Landsat) and can be applied to other444

disciplines dealing with seasonal or non-seasonal time series, such as hydrology, climatology,445

and econometrics. The R code (R Development Core Team, 2008) developed in this paper446

is available by contacting the authors.447
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Figures562

For interpretation of the references to color in this figure legend, the reader is referred563

to the web version of this article.564

N
D

V
I

0.
3

0.
5

0.
7

0.
9

Time

N
D

V
I

2000 2002 2004 2006 2008

0.
70

0.
80

0.
90 Real

Simulated

Figure 1: Real and simulated 16-day NDVI time series of a grassland (top) and pine
plantation (bottom).
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Figure 2: The STL decomposition of a 16-day NDVI time series of a pine plantation
into seasonal, trend, and remainder components. The seasonal component is
estimated by taking the mean of all seasonal sub-series (e.g. for a monthly time
series the first sub-series contains the January values). The sum of the seasonal,
trend, and remainder components equals the data series. The solid bars on the
right hand side of the plot show the same data range, to aid comparisons. The
range of the seasonal amplitude is approximately 0.1 NDVI.
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Figure 3: Simulated 16-day MODIS NDVI time series with a seasonal amplitude = 0.3,
� = 0.02 and change magnitude = -0.3. The simulated data series is the sum
of the simulated seasonal, trend and noise series (- - -), and is used as an input
in BFAST. The estimated seasonal, trend and remainder series are shown in
red. Three break points are detected within the estimated trend component (⋅ ⋅ ⋅ ).
The solid bars on the right hand side of the plot show the same data range, to
aid comparisons.
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Figure 4: RMSEs for the estimation of number of abrupt changes within a time series, as
shown in Figure 3 (a = amplitude of the seasonal component, m = magnitude
of change). The units of the x and y-axes are 4� (noise) and the number
of changes (RMSE). See Table 1 for the values of parameters used for the
simulation of the NDVI time series. Similar results were obtained for a = 0.3
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Figure 5: RMSEs for the estimation of the time and magnitude of abrupt changes within
a time series (a = amplitude of the seasonal component, m = magnitude of
changes). The units of the x-axis are 4� NDVI, and y-axis are relative time
steps between images (e.g. 1 equals a 16-day period) (left) and NDVI (right).
See Table 1 for the values of parameters used for the simulation of NDVI time
series. Similar results were obtained for a = 0.3 and 0.5.
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Figure 6: Comparison between the year of Pinus radiata planting derived from spatial
forest inventory data and the BFAST estimate of the year of major change
occurring in MODIS NDVI image time series (2000–2008) for a forested area
in south eastern Australia.

25



148°8’0"E

148°8’0"E

148°6’0"E

148°6’0"E

148°4’0"E

148°4’0"E

148°2’0"E

148°2’0"E

148°0’0"E

148°0’0"E
3

5
°
2

5
’0

"S

3
5

°
2

5
’0

"S

3
5

°
2

6
’0

"S

3
5

°
2

6
’0

"S

3
5

°
2

7
’0

"S

3
5

°
2

7
’0

"S

3
5

°
2

8
’0

"S

3
5

°
2

8
’0

"S

3
5

°
2

9
’0

"S

3
5

°
2

9
’0

"S

3
5

°
3

0
’0

"S

3
5

°
3

0
’0

"S

3
5

°
3

1
’0

"S

3
5

°
3

1
’0

"S

3
5

°
3

2
’0

"S

3
5

°
3

2
’0

"S

3
5

°
3

3
’0

"S

3
5

°
3

3
’0

"S

3
5

°
3

4
’0

"S

3
5

°
3

4
’0

"S

3
5

°
3

5
’0

"S

3
5

°
3

5
’0

"S

NDVI

-0.48 - -0.37

-0.36 - -0.29

-0.28 - -0.2

-0.19 - -0.1

-0.09 - 0

0.01 - 0.12

0.13 - 0.23

0 2 4 61

Kilometers

Figure 7: BFAST estimated magnitudes of major changes occurring in MODIS NDVI
image time series (2000–2008) for a forested area in south eastern Australia.
Negative values generally indicate harvesting, while positive values indicate
forest growth.
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Figure 8: Detected changes in the trend component (red) of 16-day NDVI time series
(black) extracted from a single MODIS pixel within a pine plantation, that
was planted in 2001 (top), harvested in 2004 (middle), and with tree mortality
occurring in 2007 (bottom). The time of change (- - -), together with its
confidence intervals (red) are also shown.
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Figure 9: Fitted seasonal, trend and remainder (i.e. estimated noise) components for
a 16-day MODIS NDVI time series (data series) of a pine plantation in the
northern part of the study area. Three abrupt changes are detected in the trend
component of the time series. Time (- - -), corresponding confidence interval
(red), direction and magnitude of abrupt change and slope of the gradual change
are shown in the estimated trend component. The solid bars on the right hand
side of the plot show the same data range, to aid comparisons.
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